Configurations of curves and geodesics on surfaces

نویسندگان

  • Joel Hass
  • Peter Scott
چکیده

We study configurations of immersed curves in surfaces and surfaces in 3-manifolds. Among other results, we show that primitive curves have only finitely many configurations which minimize the number of double points. We give examples of minimal configurations not realized by geodesics in any hyperbolic metric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces

This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.

متن کامل

Algebraic Closed Geodesics on a Triaxial Ellipsoid *

We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R. Such geodesics are either connected components of spatial elliptic curves or of rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves, the addition...

متن کامل

Con gurations of curves and geodesics on surfaces

We study con gurations of immersed curves in surfaces and surfaces in 3{manifolds. Among other results, we show that primitive curves have only nitely many con gurations which minimize the number of double points. We give examples of minimal con gurations not realized by geodesics in any hyperbolic metric. AMS Classi cation 53C22; 57R42

متن کامل

2 9 Ju n 20 05 Algebraic Closed Geodesics on a Triaxial Ellipsoid ∗

We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R. Such geodesics are either connected components of spatial elliptic curves or rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves and the addition...

متن کامل

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Normal Approximations of Geodesics on Smooth Triangulated Surfaces

We introduce a novel method for the approximation of shortest geodesics on smooth triangulated surfaces. The method relies on the theory of normal curves on triangulated surfaces and their relations with geodesics. We also relate in this work to normal surfaces and comment on the possible extension of the method for finding minimal surfaces inside 3-manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999